
a learner-centered approach to 
teaching programming

mahesh gudapakkam



a learner-centered approach to 
teaching programming

mahesh gudapakkam





This thesis is submitted in partial fulfillment of the requirements for the degree of 

Master of Fine Arts in Design, and approved by the MFA Design Review Board  

of the Massachusetts College of Art and Design in Boston, Massachusetts.

May 2009

________________________________________________

Brian Lucid, Thesis Advisor 

Assistant Professor of Design, Dynamic Media Institute 

Massachusetts College of Art and Design, Boston

________________________________________________

Hubert Hohn, Thesis Advisor

Director, Computer Arts Center

Massachusetts College of Art and Design, Boston

________________________________________________

Joe Quackenbush

Assistant Professor of Design, Dynamic Media Institute 

Massachusetts College of Art and Design, Boston

________________________________________________

Jan Kubasiewicz

Coordinator of Graduate Program in Design, Professor of Design, Dynamic Media Institute 

Massachusetts College of Art and Design, Boston





THANK YOU

My wife, Audrey

Mom and Dad

My sister

Hubert Hohn

Brian Lucid

Joe Quackenbush

Jan Kubasiewicz

for being you, and for being there.

for giving me the best gift of all, a great education.

for supporting me in so many ways.

for being a friend, mentor and pillar of support. 

for your patient and insightful guidance.

for helping me make sense of all of this. 

for your friendship and intellect.

My colleagues at DMI for pushing me to be a better designer and a thinker. A big shout 

out to Simon, Erich, Cici, and Yu.

And to all the coffee shops that gave me free refills, free WiFi, and room to plug my 

laptop.





thesis abstract

Learning to program is difficult, and of particular challenge to an audience of art-

ists, designers and educators. These learners may have a limited background  

in mathematics and programming logic and also vastly different motivations from  

a student majoring in computer science. Yet the pedagogy we use to teach  

them programming is the same as for everyone else.

While traditional programming languages and environments are powerful in their 

capabilities to address a variety of programming needs, they are often ill suited to 

teaching programming to beginners because of their complexity and rigidity  

of syntax.

So what is the best approach to teaching programming to such an audience? 

What combination of pedagogy and tools best responds to their particular needs?

This thesis proposes a learner-centered approach to teaching programming - an 

approach that combines the use of visual representations for explaining abstract 

programming elements, and a thoughtfully designed interactive learning environ-

ment for working with these elements and verifying a student’s understanding.

By tying the abstract program logic to its more tangible visual output within the 

setting of an interactive visual learning environment, the learner-centered  

approach tries to make the process of learning how to program more engaging, 

intuitive, concrete, and ideally, more successful.



 
Introduction

 

 

contents

History of Computers and the  

field of Computing

Humans to Mechanical Machines

Mechanical to Electromechanical Machines

Electronic Machines and Beyond

Evolution of Programming  

Languages

Machine Language

Symbolic Language

Problem Oriented Languages

Modern Programming Languages

Textual and Visual Programming 

Languages

Textual Programming Languages

Visual Programming Languages

11 19

29

41



 
The Learning and Teaching of 

Programming

Fundamental Elements

Process of Programming

Programming Pedagogy

Barriers to Learning Programming

Learning Barriers

Need for a New Approach

Learner-Centered Approach to 

Teaching Programming

Curriculum and its Presentation

Learning Environment

Learner-centered Pedagogy

Pedagogical Scenario

Prototype Testing and User  

Feedback

User Testing

User Feedback

Conclusion

Future Work / Direction

Final Thoughts

Bibliography 

47

57

143

133

65

149





introduction

My first experience with programming on computers was when I was in the eighth 

grade. Our class of about 30 students was ushered into a small air-conditioned 

room housing 10 computers to learn the programming language LOGO. We felt 

special because we got to see, touch, and work with a “computer”, a novel experi-

ence for us back in the 80s. 

Our class typically lasted for an hour and the routine would be something like this 

– lecture for the first half hour, then working on our assignment for the next fifteen 

minutes, and the last fifteen were for us to get on the computer and type out our 

work. To this day I have wondered why our time on the computer was so limited 

- perhaps it was the cost of electricity or the fear that we might wear out the com-

puters. 

Each week’s lecture would introduce us to new commands that belonged to the 

programming language. The teacher would explain how each of these commands 

worked, and show us an example of how to use the command. Towards the end of 

the lecture, we were given an in-class assignment that tested our understanding of 

the commands we had just learned. 

Having only fifteen minutes to complete our assignment before getting on the 

computer to type it out, we rushed through our notes and textbooks to figure out 

introduction    |    11



a learner-centered approach to teaching programming

the commands required for the assignment. We soon realized that memorizing the 

commands and their syntax would help us save precious time. Then began the 

process of thinking through our logic. We needed to come up with a set of steps 

using the right combination of commands which when executed in a particular or-

der would help us get the desired result of our assignment; and all of this on paper. 

When it felt that we finally had our perfect program it was time to share it with our 

teacher. More often than not, he would find a command used incorrectly or a flaw 

in our logic; in which case we repeated our process till we got it right. Once we got 

the go-ahead from our teacher, we would switch on our computers to carry out the 

final step - typing out our program. 

Amidst all the fighting for our share of time on the computer our efforts would cul-

minate with a magical shape on the screen. Mission accomplished! 

There were two things that particularly intrigued me about this early experience 

with programming. First, was the lack of a bigger picture - why I was learning to pro-

gram? What would I use programming for? Clearly I could pick up a pencil and draw 

a circle or a square on a piece of paper in less than a few seconds; so I couldn’t 

quite understand the point in learning this foreign language to do just the same. 

No aspect of the pedagogy helped answer this for me. Second, was the fact that to 

have the computer do anything for me, I had to first think through all of the steps. 

I didn’t quite understand how the computer was helping me do my work if I had to 

tell it how to do the work in the first place. 



My second stint with programming was during my undergraduate years. Over a 

two-year period we learned programming in other languages, namely BASIC, C, 

FOXPRO, and some UNIX shell scripting. The approach to teaching all of these 

languages was no different from that with LOGO. Lectures took up most of the 

class time with a great deal of emphasis on knowing the different commands and 

constructs for each programming language. However, this time around the number 

of commands and constructs seemed a great deal more. Learning to successfully 

program with these elements became an exercise in memorizing and impeccably 

reproducing as many of the commands as possible. 

The assignments, at times, were quite detached from our daily lives. For instance, 

coming up with a program that would help manage books at a library, or a program 

to help manage an inventory of scooter parts in a manufacturing company. So our 

understanding of the use of programming in the real world was fuzzy at best.

Our time on the computer continued to be limited and precious. It forced us to 

flesh out our logic for the assignments well before we got on the computer. Given 

my past experience with such a limitation, I started thinking and writing out my 

programs on paper. I soon devised an approach that worked quite well for me. I 

would write out my program on a sheet of paper. I would also come up with a series 

of sample data that covered every possible scenario my program might encounter. 

For each such set of data I would use a separate sheet of paper, and essentially run 

through the logic of the entire program. Towards the end I would check if I got the 

desired result. Then repeat this same process for every other set of sample data on 

introduction    |    13



separate sheets of paper. This was my modus operandi. 

I was essentially playing out two roles – that of the programmer and that of the 

computer. Only later did I realize that each of the sheets of paper was an exercise in 

‘debugging’ my program. This exercise wasn’t explicitly highlighted or emphasized 

in the pedagogy; it just happened to be something I participated in to maximize my 

time on the computer. I also realized how critical and integral debugging is to the 

process of programming.

Perhaps the most annoying aspect of my learning experience was the frustration 

surrounding programming syntax. Syntax forced me, as the programmer, to write 

out my programs in a particular way and any deviation from these rules would re-

sult in an incorrect program and an angry computer. It also drove me insane when I 

spent a disproportionate amount of time troubleshooting my program only to later 

figure out that I had merely forgotten to include a semi-colon or to close a paren-

thesis. In spite of my wishes to comply with these rules, they were often cryptic and 

non-intuitive, making it difficult for me to adhere to them. At that time, I was left with 

no other choice but to spend a great deal of time and effort in memorizing these 

non-intuitive rules of syntax. To this day, syntax continues to frustrate my everyday 

programming experience.

As I reflect upon my early experiences in learning how to program, many of the is-

sues I faced then continue to persist in today’s classrooms.

a learner-centered approach to teaching programming



Learning to program is, more often than not, viewed as an exercise in memoriz-

ing the various programming commands and concepts. Research has shown 

that simply knowing about programming elements does not translate into 

knowing how to apply them. 

Greater emphasis, intended or not, gets placed on writing syntactically accurate 

programs in the early stages instead of thinking through a problem logically. 

This misplaced focus sacrifices development of essential problem-solving skills.

Beginners continue to struggle with aspects of syntax that contribute little to 

the overall process of understanding and learning how to program. Yet we 

continue to use programming languages that rely heavily on syntax to teach 

programming to beginners. While such languages are great for building a 

diverse range of industry applications they are often ill suited for the purpose of 

teaching programming. 

Since little is done to emphasize development of transferable skills, this un-

fortunate cycle repeats itself with each new programming language that the 

learner attempts to take on in their programming career.

These issues persist because of a multitude of reasons – ranging from misplaced 

emphasis in the pedagogical approach, to lack of available support in programming 

languages and environments to cater to the needs of a beginner programmer.

introduction    |    15



While such issues continue to plague the process of learning how to program there 

have also been notable efforts in the past few decades to tackle some of these 

barriers. DBN, Scratch and Processing with their focus on making programming 

more accessible to a whole new audience are some of the more recent efforts in 

this area. 

The “learner-centered approach to teaching programming”, proposed in this thesis, 

builds upon the thinking and motivations of such previous efforts. The approach 

digs deep into understanding the process of programming and in also understand-

ing what are some of the recurring barriers faced by learners of different back-

grounds and motivations.

a learner-centered approach to teaching programming



introduction    |    17



01



    |    19

01
history of computers and the field of computing



In Digital Computer Programming, Peter Stark offers an interesting and engaging 

historical account of computers and various calculating devices.  Stark’s account  

is of particular interest, as it gives us a better sense of how needs and events over 

the course of mankind have influenced the invention and design of calculating de-

vices leading upto the modern day computer. Key events and aspects have been 

summarized here for the benefit of the reader. 

Humans to Mechanical Machines

Before the invention of machines, or for that matter the invention of arithmetic, 

humans had to develop ingenious ways to keep count and make complex calcula-

tions. The earliest counting device was the human hand and its fingers. As we 

started to deal with larger quantities (greater than ten human-fingers) we started 

to rely on external devices such as stones or pebbles. Shepherds were known to 

have created a pile of stones, one for each sheep that they took to grazing. At the 

end of the day, they removed a stone for every sheep that returned, and if any 

were left in the pile they knew that a sheep had gone missing. In fact the word 

“calculate”, originates from the latin w ord calx, which means stone (Stark, 1967).

Another device used by early humans were tally sticks. These were wooden sticks 

with notches carved in them that represented numbers. Their most prominent use 

was by the England’s Court of the Exchequer; where they were used to keep of-

ficial accounts of government finances (Stark, 1967). 

a learner-centered approach to teaching programming

Fig 1.1  A Tally Stick  
(Adam Crowe - Flickr)



history of computers and the field of computing    |    21

Perhaps the most useful and earliest relative of the modern day computer was the 

abacus, or the counting board. While its exact origins are unknown, the abacus 

was used in many of the early cultures of Romans, Egyptians, Greeks, Chinese, 

and the Indians well before the adoption of the modern written numeral system. 

Although the abacus is seen as an early version of the calculator it was merely a 

mechanical aid used to assist with keeping count; they are not calculators in the 

sense we use the word today (Stark, 1967). 

As both human needs and the technology of the time evolved, the need for more 

complex calculating devices grew. By mid-seventeenth century mechanical calcu-

lating machines used for adding and subtracting were starting to be invented. In 

1642, a Frenchman named Pascal invented the first of the mechanical calculators. 

Being in charge of the local tax collections and the need to keep careful track 

of the money collected, Pascal designed an adding machine to help with this 

task. His machine was entirely mechanical; with numbers entered on telephone 

dial-type wheels; gears and levers were used to do the addition, and the answers 

were read out of the machine from windows. It was a “marvel of construction 

and design for its time,” but it could only add or subtract (Stark, 1967). Leibniz, a 

German, invented the first of the machines that could add, subtract, multiply, and 

divide. Although a major step forward, these machines were still awkward and 

unreliable and so not commercially manufactured (Stark, 1967).

The first set of large-scale calculators started to be designed and built around 

early nineteenth century. In 1786, a German by the name of Muller, invented a 

Fig 1.2 An Abacus (Digital Computer 
Programming, Peter Stark - 1967)



device he called the difference engine, for purposes of calculating certain compli-

cated mathematical functions. Muller did not actually build this machine, however 

Charles Babbage, an Englishman, built something similar in 1820. The machine 

was small and mostly a working model but it served to show that the principle 

worked. So Babbage started to work on the largest difference engine yet, with an 

accuracy of twenty digits, and even capable of printing it’s output. Although his 

concept was sound – the mechanical developments of the time was just suitable 

to build such a machine (Stark, 1967). 

a learner-centered approach to teaching programming

Fig 1.3 Part of the Babbage Difference Engine, built between 1823 and 1833  
(Digital Compter Programming, Stark - 1967)



history of computers and the field of computing    |    23

Soon after he stopped work on the difference engine, Babbage invented his 

analytical engine. This machine was far more useful than its predecessor, in that 

it could perform calculations that the difference engine could not. In fact, it had 

all the mechanical equivalents of a modern computer. Most importantly, it had 

a memory section where one could store the various numbers required by the 

problem, and that it could be programmed. “The program1 itself was stored on 

punched cards.” (Stark, 1967)

While punch cards are considered a modern invention they actually date back to 

1725. The first use of punch cards that really worked was in 1804, during the In-

dustrial Revolution. Automatic looms at that time were used to manufacture fabrics 

on a large-scale. These early looms could only produce simple patterns of one 

color on cloths. Complex patterns were not feasible as a new loom would have to 

be built for each pattern, and that was an expensive proposition. A Frenchman, 

Jacquard, developed an automatic loom that was controlled using punch cards. By 

changing these punch cards, one could change the patterns on the cloth. (Stark, 

1967)

1A program for a computer is a set of instructions telling the computer what to do and in 

which order, with the goal of obtaining a specific result. Depending on the results of a 

particular calculation the program could even change itself. This is an essential part of all 

modern digital computers and gives them its power. (Daniel Kohanski, 1998) 



Several decades later, in 1890, punched card based tabulating machines were 

built by an American, Hermann Hollerith (Stark, 1967). He built a set of machines 

that would help shorten the time required for US census calculation by rapidly 

tabulating statistics from millions of pieces of data.

Mechanical to Electromechanical Machines

According to Stark’s history, early computing machines were mostly “mechanical” 

using gears, shafts, pulleys, levers, and other mechanical devices to get their work 

done. Consequently the machines were large, bulky, heavy, slow, and fairly unreli-

able. With the advent of electricity, the transition to electromechanical devices was 

inevitable, albeit slow. (Stark, 1967)

“One of the earliest electromechanical devices was the Automatic Sequence 

Controlled Calculator (Mark 1), built by Howard Aiken of Harvard University (Stark, 

1967).” It was some 50 feet long and 8 feet high taking close to 5 years to be built. 

When completed in 1944, Mark 1 was the most versatile machine yet built. It could 

add, subtract, multiply, divide, calculate logarithms, powers of ten, calculate trigo-

nometric functions such as sines and cosines, and many other complicated calcu-

lations; all done through a program that could guide it through the long series of 

calculations (Stark, 1967). To give you a sense of its speed, it took just 3 seconds to 

multiply. Mark 1 was used for well over 15 years before being replaced. 

Although electromechanical computers were significantly faster than their me-

a learner-centered approach to teaching programming



history of computers and the field of computing    |    25

chanical predecessors they were still large and bulky. As Stark explained, “To 

speed things up, the trend started to shift towards ‘electronics’ (Stark, 1967).”

Electronic Machines and Beyond

The earliest fully electronic computer, the Electronic Numerical Integrator And 

Computer (ENIAC) was developed at U. of Pennsylvania for the US Army. It was 

used to calculate ballistic tables for the Ordnance Department. It occupied a 

physical space of 50 feet by 30 feet (still large) and consisted of about 18,000 

vacuum tubes (still bulky) and required close to 130,000 watts of power. This much 

power meant the need for special cooling and air-conditioning equipment to keep 

the temperature from getting too high. However the machine was versatile and 

fast – carrying out 5000 additions or 350 multiplications a second. (Stark, 1967)

Several other machines followed the ENIAC, notably, the Electronic Discrete Vari-

able Automatic Computer (EDVAC) also from U. of Pennsylvania, the Standards 

Electronic Automatic Computer (SEAC) at the National Bureau of Standards, and 

the Whirlwind 1 at the Massachusetts Institute of Technology, however each of 

these was built for a specific purpose or set of users. Others, like the UNIVAC 1 

or IBM 650, were the first machines that were produced in large numbers. (Stark, 

1967)

The early electronic machines continued to be large and bulky because of their 

use of vacuum tubes. The size was not their only shortcoming; vacuum tubes were 



also subject to shorter lifespan because of frequent burnouts. Towards the end of 

the 1950s, transistors started to invade the computer market. They offered several 

significant advantages; for one, they were smaller and lighter; two, they were 

much more reliable - a well-designed transistor circuit could last forever; three, 

they could operate on much less power, without generating as much heat. Ulti-

mately, it was the reliability factor of transistors that steered the industry towards 

their use in the modern computers of today. (Stark, 1967)

Fast forward to the present day … Today’s modern computers are “marvels of 

technology” as Stark puts it. Mass produced in millions, costing significantly less, 

and with blistering calculating speeds of 80 billion floating-point operations per 

second compared to the early mechanical or electromechanical computers.

Stark ends by pointing to the two directions that modern computer research and 

development has since focused on - computer hardware and computer software. 

Developments with regards to the computer, and the technology behind its elec-

tronic components all fall under the category of computer hardware. While the 

programming required to make computers work efficiently fall under the domain 

of computer software.

In this next section we shall review the beginnings and evolution of the field of 

programming through the lens of Programming Languages.

a learner-centered approach to teaching programming



history of computers and the field of computing    |    27



In the design of programming languages one can let oneself be 
guided primarily by considering “what the machine can do.” Con-
sidering, however, that the programming language is the bridge be-
tween the user and the machine – that it can, in fact, be regarded 
as his tool – it seems just as important to take into consideration 
“what Man can think.” - Edsger W. Dijkstra

02



    |    29

02
evolution of programming languages



Peter Stark offers the perfect analogy to understanding what a programming 

language is by comparing it to our existing notion of a language - a means to 

communicate between people. He explains that a programming language is very 

similar, in that it helps communication between people and computers.

Stark (1967) further highlights two important characteristics of any language, in-

cluding programming languages:

1. It must use a standard set of symbols that are understood by everyone using 

the language. These symbols have certain definite meaning and are referred to 

as the vocabulary of the language.

2. There must be a systematic method of using these symbols that are followed 

by everyone. One can view them as the rules of grammar and syntax; that tell 

us which words to use and how to use them.

In spoken languages, poor vocabulary and grammar can be tolerated to some de-

gree; in certain cases, ambiguity is compensated for by context. However, none of 

this is tolerated in a programming language; it demands preciseness and accuracy 

from the programmer if the program needs to be understood by the computer.

 

Similar to computers, programming languages have also evolved with time. Stark 

categorizes their evolution in terms of their proximity to the underlying architec-

ture of the computer or machine. His classification yields four main categories 

of programming languages, namely - Machine Languages, Symbolic Languages, 

a learner-centered approach to teaching programming



evolution of programming languages    |    31

Symbolic Languages with Macro-Instructions, Problem Oriented Languages before 

finially arriving at programming languages of the modern day. A summary of 

Stark’s 1967 categorization of programming languages is outlined below to offer 

some background to the reader. The evolution of programming languages is of 

particular importance to this thesis, because some of the motivations and design 

decisions have implications for teaching as well as for learning how to program. 

Machine Language: The language of the computer   

(First-generation language)

In spite of the numerous programming languages that we have today; the com-

puter, as a machine, can only understand one language. This language is aptly 

called the machine language, comprised of 0s and 1s. The computer circuitry is 

designed in a way that it recognizes these 0s and 1s as electrical signals (signaling 

OFF and ON correspondingly) needed to run the computer. Stark (1967)

Because there are different types (manufacturers) of computers, machine lan-

guages differ from one computer type to another. A typical program to add two 

numbers (see example to the left) written in machine language might look some-

thing like this.

Clearly, as Stark explains, machine language was not an easy language to learn 

for several reasons: it was difficult to read; it was a non-intuitive code of numbers 

that the programmer needed to learn first; and lastly, the code varied from one 

Fig 2.1 A machine language program to 
add two numbers in memory and print 
the result. ( from “Digital Computer Pro-
gramming”, Peter Stark)

10001471

14002041

30003456

50773456

00000000



computer type to another, so the knowledge gained about one type of computer 

was not transferable to another type – what a waste of time! Machine language 

programming was consequently error prone and time consuming. While it was the 

only language that the computer could understand; it was not one that program-

mers could regularly use and program in. Stark (1967)

Symbolic Language or Assembly Language  

(Second-generation language)

Having realized these deficiencies programmers looked for ways in which they 

could address some of them. Since computers were great at storing letters, 

numbers, and symbols, they devised a way for computers to recognize certain 

combinations of letters and numbers. Using an intermediary program, the comput-

er would translate line-by-line, a program written in symbols into one of numbers 

(0s and 1s) that the computer can understand. While this meant extra time for the 

computer to first translate and then run the program, it minimized the amount of 

the programmer’s time spent memorizing numbered instructions or correcting er-

ror prone programs. Stark (1967)

For example, here is an assembly language program that does exactly what the 

previous example in machine language accomplished. The program translates to 

something like, “take A, add B, store the result in C, type C, and halt Stark (1967).” 

Notice how much more easily the program reads. It replaces easy-to-remember, 

and at times familiar, words or phrases for hard-to-remember numbers. 

a learner-centered approach to teaching programming

Fig 2.2 An assembly language program 
that does the same as the previous ma-
chine language program. ( from “Digital 
Computer Programming”, Peter Stark)

CLA A

ADD B

STA C

TO  C

HLT



evolution of programming languages    |    33

In spite of an improvement in the ease of use, to write an accurate assembly 

language program the programmer was still expected to know how his computer 

worked. In other words, to write a program that would add two numbers, one 

needed to not only know the logical steps involved in the process of addition but 

also know how their computer worked internally – an additional burden for the 

programmer.

Nevertheless, assembly languages did make programming a bit easier, less error 

prone and offered significant savings in time for the programmer, by delegating 

the task of translation to the computer instead of the programmer. 

Symbolic Language with Macro-Instructions

Programmers soon realized that often a certain set of machine language or 

symbolic language instructions were repeated over and over. For instance, to 

print out a number on a certain type of computer, a series of three instructions in 

a particular order were always required. Programmers would have to repeat these 

instructions each time they wished to print anything, thus resulting in wastage of 

time and the possibility of errors. Programmers soon figured out a way to address 

this issue. Stark (1967)

The overall task of printing with a computer was given a name, like PRINT. The 

programmer would instead refer to the instruction, PRINT, in their program 



whenever they wished to print anything. A short sub-program, called “assembler”, 

was included with the main program to take care of translating the single PRINT 

instruction to its equivalent three machine language instructions. An instruction, 

such as PRINT, which in turn represents several underlying machine language 

instructions, is called a macro-instruction Stark (1967). 

The approach of using macro-instructions in programming languages as a means 

to simplify the programming process was a critical step in the evolution of pro-

gramming languages. While it meant more work for the computer, it meant tremen-

dous saving of work for the programmer. It also significantly reduced the length of 

programs that were written and reduced the amount of errors Stark (1967). 

Problem Oriented Language  

(Third-generation languages)

Up until now, programming in machine or symbolic languages required both an 

understanding of the machine (foremost), as well as an understanding of the prob-

lem (secondary) that was being solved Stark (1967). The ability to create macro-

instructions not only simplified the programming process but it also paved the way 

for possibly relieving the programmer of having to understand the machine first 

before solving a problem. 

Problem Oriented languages were the next phase in the evolution of program-

ming languages. They extended symbolic languages with few macro-instructions 

a learner-centered approach to teaching programming



evolution of programming languages    |    35

to symbolic languages with only macro instructions Stark (1967). In other words, 

every instruction in a problem oriented language was a combination of several 

machine language instructions. 

The languages are called “problem oriented” because of how many of their 

instructions are titled similar to terms used in the problem domain itself. So a 

scientist using a science-oriented programming language might find instructions in 

the language similar to scientific terms they use on an everyday basis Stark (1967). 

Similar to assembly and machine languages, problem oriented languages also 

require an intermediary program, called “compiler”, that does the job of translating 

problem oriented instructions into corresponding machine language instructions. 

As Stark (1967) explains, this translation is possible as long as the programmer 

and compiler agree on the words and symbols (vocabulary of the programming 

language), and the way in which they are used (the grammar).

Examples of early problem oriented languages were, FORTRAN (FORMula 

TRANslation), a scientific and mathematical language, COBOL (COmmon Business 

Oriented Language) a business applications language, and ALGOL (ALGOrithmic 

Language), another mathematical language.

Advantages to Problem Oriented Languages

Stark goes on to highlight some significant advantages to a problem oriented 

Fig 2.3 A COBOL version of the same 
program to add two numbers would be 
something like this. ( from “Digital Com-
puter Programming”, Peter Stark)

COMPUTE C = A + B



language, most notably being: 

Ease of use - For the first time since programming languages were created, 

the programmer was freed of the need to understand the machine in order to 

solve their problem. They were no longer required to know how the computer 

worked and internally stored or accessed data. They could focus on their par-

ticular problem and the logical steps required to solve it. 

Reduce the likelihood of errors - It also significantly reduced errors by having 

the computer take care of all the little details specific to its inner workings and 

sparing the programmer from it.

Ability to speak the language of the problem - Problem oriented languages 

afforded the programmer a more natural and familiar vocabulary for expressing 

their solutions (programs). They could write programs using terms they normally 

used instead of having to speak the language of the machine.

Portable - Given that the program written by the programmer is intended to 

address a particular problem and not the eccentricities of a particular computer, 

With problem oriented languages, it was now feasible to write a program and 

have it be translated into many different machine languages, depending on the 

computer one wished to use. The programmer could write one program, and 

run it on many different types of computers.

a learner-centered approach to teaching programming



evolution of programming languages    |    37

Modern Programming Languages

Most of today’s programming languages are by design, problem oriented. Many 

have been designed from scratch to serve a particular purpose or industry. Some 

of them were later altered to meet new needs, and at times combined with other 

languages to create an entirely new language. What has remained consistent is 

the purpose behind many of these languages; they were built to serve the needs 

of industry. 

Problem oriented languages that are able to serve the needs of more than one 

industry or purpose, are often referred to as “general-purpose” programming 

languages. These languages are powerful in that they lend themselves to building 

a variety of software applications for industries like business, finance, science, and 

engineering amongst others. They are able to tackle all sorts of arbitrary program-

ming tasks by standardizing the use of programming elements through rigid rules 

of syntax. C++ and JAVA are two popular examples of general-purpose languages. 

While this makes general-purpose languages flexible and powerful for use in 

building different applications, they are particularly difficult for beginners to under-

stand and work with, on account of their rigidity with syntax. Several efforts have 

been made towards developing programming languages and environments aimed 

particularly at beginner programmers. 

BASIC, Design-By-Numbers, Processing and Scratch are all examples of languag-



es and environments that grew out of these efforts.  They are discussed in more 

detail in the chapter “Barriers To Learning Programming”.

So far we have looked at programming languages based on how they work and 

interact with the underlying machine. We have seen them evolve from a machine 

language of purely numbers representing electrical signals to a more abstract 

language of named instructions that are closer to our spoken language and repre-

sent a collection of computational actions. 

It is time we look at programming languages through another important lens, that 

of the very expression and appearance of the program. In other words, how does 

the programmer express his/her program and how this resulting program look? 

This aspect of programming languages is also relevant to our discussion because 

of its implications for a beginner who is learning how to program.

a learner-centered approach to teaching programming



    |    39



03



    |    41

03
textual and visual programming languages



The ultimate manifestation of a programming language is a “program” written us-

ing the language’s set of symbols, in other words, the language’s vocabulary. As 

outlined by Stark, the rules or syntax of the language describe the possible com-

binations of the symbols to form a syntactically accurate program. However, the 

meaning that arises from the combination of these symbols is one that is handled 

by the semantics of the language (Wikipedia-Programming Language).

The syntax of a programming language determines how a programmer puts 

together a program and how the program ultimately looks. It is this attribute of 

a program’s appearance that provides another way to categorize programming 

languages - textual and graphical (or visual).

Textual Programming Languages

Most programming languages are purely textual in appearance. A program written 

in such a language is a sequence of text including words, numbers, and punctua-

tion, much like a written natural language (Wikipedia-Programming Language). For 

the most part, the computer executes such a program line-by-line starting from 

the top; with some variations when programming elements such as conditionals, 

loops, and functions get involved (more on this in section “Fundamental Elements” 

of chapter “The Learning and Teaching of Programming”).

BASIC, C, C++, JAVA, PROCESSING and ACTIONSCRIPT are few examples of 

Textual programming languages.  

a learner-centered approach to teaching programming



textual and visual programming languages    |    43

Textual programming languages rely heavily on strict syntactical rules in order 

for the program instructions to be successfully interpreted and executed by the 

computer. 

Below is an example of a program that draws two lines as part of its output. It is 

written in a textual language called Processing.

void setup() {

	 size(100, 100);

	 noLoop();

}

void draw() {

	 line(10, 100, 30, 50);

	 line(30, 100, 50, 50);

}

Visual Programming Languages

Visual programming languages are more graphical in appearance. Such lan-

guages consist of programming elements that are visually represented using 

icons, graphical objects, free hand sketches or logic diagrams. The process of 

programming with a visual programming language is one of manipulating program 

elements graphically rather than specifying them textually, and spatially arrang-



ing the elements to indicate both program structure and flow (Wikipedia-Visual 

programming language). Scratch, Max/MSP, and Quartz Composer are few popular 

examples of visual programming languages. 

Margaret Burnett (1999) identifies a range of motivations that went behind devel-

opment of visual programming languages. She points to the earliest motivations 

around exploring alternative approaches to traditional text-based programming. 

Burnett further mentions specific goals of visual programming languages in mak-

ing programming more accessible to a particular audience, and improving the cor-

rectness with which people perform programming tasks. She explains that visual 

programming languages achieve these goals by using four common strategies: 

Concreteness: “Concreteness is the opposite of abstractness, and means 

expressing some aspect of a program using particular instances. One example 

is allowing a programmer to specify some aspect of semantics on a specific 

object or value...”

Directness: “Directness in the context of direct manipulation is usually de-

scribed as “the feeling that one is directly manipulating the object” (Shneider-

man, Ben 1983). Given the concreteness in a visual programming language, 

an example of directness would be allowing the programmer to manipulate 

a specific object or value directly to specify semantics rather than describing 

these semantics textually.” 

a learner-centered approach to teaching programming

Fig 3.1 Example of a program from the vi-
sual programming language, Scratch.



textual and visual programming languages    |    45

Explicitness: “Some aspect of semantics is explicit in the environment if it is 

directly stated (textually or visually), without the requirement that the program-

mer infer it. An example of explicitness in a VPL would be for the system to ex-

plicitly depict dataflow relationships by drawing directed edges among related 

variables.”

Immediate Visual Feedback: “In the context of visual programming, immediate 

visual feedback refers to automatic display of effects of program edits.”

However in order to understand how these strategies actually help make pro-

gramming more accessible and intuitive, we need to first understand the process 

of programming.



Making processes that simulate and decide requires programming. 
– Ben Fry and Casey Reas, Creators of Processing

04



    |    47

04
the learning and teaching of programming



Fundamental Elements

In order to program, a learner needs to gain an understanding of the fundamental 

elements of programming, namely: variable, operation, conditional, loop, and  

function. 

Because of their fundamental nature, these elements are universal to all program-

ming languages. What varies from one language to another is the syntax of how 

these elements get depicted. 

Each of the programming elements translates into a specific computational  

action which instruct the computer to do something specific. Let’s discuss them in 

greater detail.

VARIABLE

A variable is essentially a storage container for data. Data is what we manipulate 

within a program and so we need a place to store it. Once we store it, we need a 

way to access it when we need it. For this reason, every variable has two impor-

tant attributes – first its name, by which you can refer to it; and second its value, 

that which it stores. As the name ‘variable’ suggests, the value that it stores can 

vary. For instance, here is an example of a variable by the name of width that 

stores a value of 100.

 

	 width = 100

a learner-centered approach to teaching programming



the learning and teaching of programming    |    49

OPERATION

An operation is an instruction to the computer to perform some sort of calculation. 

Below is an example of an operation that calculates the sum of two numbers, 100 

and 200, and stores the result of this operation in a variable called ‘sum’. 

	 sum = 100 + 200

CONDITIONAL

A conditional is a programming element that allows one to pose a question within 

their program, the answer to which allows the program to either run or not run a 

set of statements. In other words, it allows one to change the course of a program 

depending on the answer to a particular question. Conditionals introduce the idea 

of branching within a program - depending on certain conditions; the program can 

follow different paths. For instance in the below example, if the value of a variable 

‘choice’ is equal to ‘2’, then the program will execute the instruction to draw a box, 

and we would see a box appear on the screen; but if the variable ‘choice’ is not 

equal to ‘2’, then we will not see a box drawn on the screen.

	 if ( choice = 2 ) 

	 {

		  drawRectangle(10, 10, 100, 200)

	 }



LOOP

A loop is a programming element that allows the program to repeatedly execute 

a set of statements for a predetermined number of iterations. At the end of each it-

eration, the loop checks to see if it has executed the set of statements the desired 

number of times. If it has not, the loop performs another iteration; if it has, the loop 

stops executing and proceeds with the remainder of the program. For instance, in 

the below example, we use the loop programming element or construct to draw 

ten rectangles. The loop uses the variable “i” to keep track of the number of itera-

tions it has performed. 

	 for ( i = 0; i < 10; i=i+1 ) 

	 {

		  drawRectangle(10, 10, 100, 200)

	 }

FUNCTION

A function is a programming element that does something specific. They are writ-

ten for the purpose of being reused at a later time. The advantage of a function 

is that to use it, one need not know how the function was actually written. All we 

need to know to use a function is what it does, and if we need to provide it with 

any inputs for it to work. The inputs to a function are called its ‘parameters’ - they 

define how that instance of the function works.

a learner-centered approach to teaching programming



the learning and teaching of programming    |    51

The previous example used a function called drawRectangle. The purpose of this 

function is to accept four parameters or inputs to draw a rectangle on the screen.

	

	 drawRectangle(10, 10, 100, 200)

All other elements of a programming language are mostly extensions to the funda-

mental elements outlined above. In other words, they build upon the capabilities 

of the fundamental elements. Therefore, understanding these extraneous ele-

ments is not as critical to the process of learning how to program.

Process of Programming

Winslow (1996) defines programming as a complex process that involves many 

steps including:

1. Studying a given problem statement or set of requirements. 

2. Producing an algorithm, often in pseudocode, to solve the problem. 

An “algorithm” is a recipe or a specific set of actions that is taken to solve 

a problem and a program is a collection of algorithms (Kohanski, 1998). A 

“pseudocode” is a detailed yet readable description of what a computer pro-

gram or algorithm must do, and is expressed in a ‘natural language’ rather than 

a programming language. It is used as a step in the process of developing a 



program (TechTarget, 2005)

3. Translating this algorithm into code (a written program) using a programming 

language.

4. Testing and amending the program until it meets the original set of require-

ments.

Garner (2007) highlights an important observation that learners often clump 

together steps one through three. Rather than focus on the logical steps required 

to solve the problem and “express these steps in a more natural language, like 

pseudocode;” learners instead try to produce finished programs written in a 

programming language. Deek calls this a “programming before problem solving” 

approach by the learner (Deek, 1998). 

The first three steps help the programmer develop a formal and logical approach 

to problem solving. Such a skill is invaluable and more importantly, transferable. 

No matter which programming language the beginner later encounters in life, the 

logical approach to solving the problem will always remain the same. What will 

vary from language to language is the program’s visible expression in the chosen 

programming language.

A final step in the programming process is that of testing, debugging, and amend-

ing the program until it achieves the desired result. Learning to debug requires 

a learner-centered approach to teaching programming



the learning and teaching of programming    |    53

that the learner understand how to read a program; an ability distinct from  

writing a program (Winslow, 1996). Debugging also requires a strategy for testing 

the program. The learner needs to have a clear idea of the desired performance 

of each section of the program, and how to test it. 

 

Programming Pedagogy

Robins et. al. (2003) find that most introductory courses and textbooks approach 

the task of teaching programming by devoting much of their time to presenting in-

formation about a specific programming language. They further point out that the 

lectures typically introduce the various elements of the programming language 

to the learner, and elaborate on them through examples and exercises. Thus one 

learns how to program within the context of a programming language.

 

Learning in the context of a programming language:

Robins et. al. (2003) have termed this approach to teaching programming as a 

“knowledge driven” approach. It is declarative in nature, in that it focuses more on 

informing the learner of the various elements available in a programming lan-

guage as opposed to focusing on the logical steps required to solve the problem 

(in reference to Winslow’s definition of the programming process). 

Knowing versus Applying:

The declarative approach can also lead to learners getting lost and overwhelmed 



by the sheer number of programming elements in a given language. Not know-

ing which elements are critical to programming, learning becomes an exercise in 

memorizing as many of these elements as possible. Davies (1993) also points out 

that, “Knowledge [of the programming elements] is only part of the picture. One 

major limitation of many of these knowledge-based theories is that they often fail 

to consider the way in which knowledge is used or applied.” In essence, ‘knowing’ 

the numerous elements of a programming language does not necessarily trans-

late into knowing ‘how to combine and apply’ these elements in ways that achieve 

the desired result. 

Lack of emphasis on pseudocode:

Garner (2007) points out that most instructors fail to encourage the use of pseudo-

code in the early stages of the programming process. He also finds that “Introduc-

tory programming texts include few, if any, references to pseudocode”. Garner 

attributes this lack of interest in using pseudocode to the fact that pseudocode is 

not executable and learners receive no direct feedback on their design, leaving 

them unsure about the accuracy of their solution; further undermining the impor-

tance of pseudocode. 

Lack of emphasis on testing and debugging:

Most programming courses ignore or give little importance to this aspect of the 

programming process. It is important that the pedagogy encourage this practice 

by offering suggestions and strategies for debugging. Programming environments 

a learner-centered approach to teaching programming



the learning and teaching of programming    |    55

can also play a positive role in facilitating testing and debugging in ways we will 

discuss later on. 



The ability to “read” a medium means you can access materials 
and tools created by others. The ability to “write” in a medium 
means you can generate materials and tools for others. You must 
have both to be literate. In print writing, the tools you generate are 
rhetorical; they demonstrate and convince. In computer  
writing, the tools  you generate are processes; they simulate and 
decide. – Alan Kay, computer pioneer (Xerox PARC, Apple)

05



    |    57

05
barriers to learning programming



Barriers to Learning How to Program

Kelleher and Pausch (2003), in their study titled “Lowering the Barriers to Program-

ming”, identified several barriers to learning how to program. The barriers identi-

fied in their study are summarized below:

1. Choice of the First Programming Language

Most introductory courses use what are called general purpose programming 

languages to teach programming fundamentals. The issue with such languages 

is that they are by design, languages that can be used for many different ap-

plications, hence the name “general purpose”. They are used to build software 

applications that serve industries like business, finance, science, and engineering 

amongst many others. 

Unfortunately, as powerful as they are, such languages are unsuitable for teach-

ing the fundamentals of programming because they were not designed with 

beginners in mind. Kelleher and Pausch point out that the need to tackle arbi-

trary programming tasks, and to make them easier to be implemented forces the 

programming language to rely heavily on rigid syntactical rules. This makes the 

resulting language unnecessarily difficult for beginning programmers (Kelleher & 

Pausch, 2003).

There have been some notable efforts at making programming languages more 

simple – for instance, the BASIC textual programming language developed at 

a learner-centered approach to teaching programming



barriers to learning programming    |    59

Dartmouth College. BASIC was designed with certain key objectives in mind, 

namely: To be easy for beginners to use, to be interactive, to allow for advanced 

features to be added for experts while keeping the language simple for beginners, 

to provide clear and friendly error messages, to respond quickly to small pro-

grams, and lastly, to shield the user from the having an understanding of computer 

hardware to program (Wikipedia).

In the arena of making languages that were more accessible to a larger, and more 

diverse set of users, Design-By-Numbers (DBN) and Processing are also notable 

examples. DBN is both a programming language and environment that provides 

a unified space for writing and running programs. It uses an easy to understand 

syntax to appeal to beginners and introduces the basic concepts of computer pro-

gramming within the context of drawing. The Processing programming language, 

in many ways evolved from DBN. Although it is a much more powerful program-

ming language / environment than DBN, its pedagogical motivations are akin 

to DBN. Processing introduces programming concepts within the context of the 

visual arts and teaches programming in a way that moves graphics and concepts 

of interaction closer to the surface. It appeals to wider audience by balancing its 

features with ease of use. In particular, Processing is built to act as a software 

sketchbook, making it easy for learners to quickly code (sketch) and explore dif-

ferent ideas in solving a problem by code. Both DBN and Processing are textual 

programming languages.

Clearly there is a need for simpler programming languages that serve the needs 



of a beginner programmer. Such languages would make it easier for beginners 

to get started with programming and give them enough background to make it 

easier for them to transition to a more powerful, general-purpose programming 

language.

2. Barriers of syntax and semantics

Programming languages have been eternally plagued with issues of syntax and 

semantics despite efforts to make languages simpler and more understandable. 

The rigid and non-intuitive rules of syntax contribute little to a learner’s under-

standing of the process of programming. They are particularly detrimental in the 

early stages of learning how to program. 

To the right is an example of a program in Processing. The following are the 

various syntactical elements present in this particular program - parenthesis ( ) , 

semicolon ; , and curly braces { }  .

The issue of complying with these non-intuitive rules of syntax severely affect 

the learning process by shifting the learner’s attention from understanding how 

programming elements work to generating syntactically accurate programs early 

on. Learners get preoccupied with issues like whether or not they are supposed to 

use a curly brace versus a parenthesis, or if they have the right amount of each.

There is a need for programming languages or programming environments to 

a learner-centered approach to teaching programming

Fig 5.1 An example program from  
Processing (a textual programming 
language) to illustrate the various  
syntactical elements in a programming 
language. 

size(200, 200);

int x = 90;

if (x > 100) {

ellipse(50, 50, 36, 36);

} else {

rect(33, 33, 34, 34);

}



barriers to learning programming    |    61

minimize syntactic complexity in favor of learners working more directly with pro-

gramming elements. The goal here is to get learners to understand the purpose 

and working of programming elements.

3. Barriers to expressing or putting together programs

Another barrier to learning programming is the very act of expressing or writing a 

program. To successfully write a program, users must understand how to express 

instructions to the computer as a program. In doing so, the learner must also fig-

ure out how to combine and sequence the various programming elements. 

This is a difficult task when the learner has to adhere to the rigid and non-intuitive 

rules of syntax. Kelleher and Pausch (2003) suggest two possible ways to make 

this easier for beginners: one, improve the programming language by making it 

simpler and less reliant on syntax (discussed earlier); two, develop alternate ways 

for beginners to communicate their instructions to the computer instead of typing 

it out.

Kelleher and Pausch (2003) point to the approach of creating objects that repre-

sent various programming elements and using these objects to enter a program’s 

instructions. The objects can be moved around and combined together in different 

ways that make syntactical sense. Actions of the user within the interface would 

define the program. In other words, the programming environment is built with the 

intelligence of what is syntactically accurate and only allows combining elements 



in an order that makes sense. Such a system would eliminate non-intuitive rules 

of syntax that the learner must remember and free the learner to focus on what is 

important.

Scratch, a graphical (visual) programming language is a great example where 

such an interaction is facilitated. Scratch allows its learners to create programs by 

simply snapping graphical blocks, that represent programming elements, together 

into stacks. The blocks are designed to fit together only in ways that make syntac-

tic sense, so there are no syntax errors. 

4. Barriers to understanding program execution

Thornburn and Rowe (2000) have found that beginner programmers “often have 

great difficulty in understanding what the computer is actually doing when it 

executes their program.” This lack of understanding affects both the student’s con-

fidence in the accuracy and validity of their logic as well as in writing subsequent 

programs.

Rajan (1992) claims that “the main problem facing novices is the lack of under-

standing of what the ‘nuts and bolts’ of a programming language actually do when 

a program is run.” This understanding is especially critical in the early stages. He 

argues that “a ‘notional machine’ - a representation in some form of the computer 

itself as an aid to (facilitate such) understanding – would be of great help to begin-

ners. This notional machine must “have a dynamic view of the algorithm in action. 

a learner-centered approach to teaching programming

Fig 5.2 Example of a program from the 
visual programming language, Scratch.



barriers to learning programming    |    63

Anything less will cause misconceptions in the users conceptual model due to 

lack of detail…”

NEED FOR A NEW APPROACH TO TEACHING PROGRAMMING 

The barriers identified by Kelleher & Pausch (200), are universal to students 

regardless of their backgrounds or motivations for learning programming. Modern 

programming languages and environments are only becoming more complex 

further raising the barriers that beginner learners face. There is a need for pro-

gramming languages and environments, that make the act of programming more 

accessible to a larger, and diverse population of learners.

With the above barriers and recommendations as a backdrop, this thesis proposes 

a learner-centered approach to teaching programming. Its approach is built upon 

the thinking, motivation and spirit of previous efforts such as BASIC, Design By 

Numbers, Processing and Scratch. Its focus is the learner, and the fundamental 

knowledge that they require to learn programming; while trying to minimize many 

of the barriers identified previously.



06



    |    65

06
learner-centered approach to teaching programming



Based on the previous research, the learner-centered approach addresses the fol-

lowing barriers to the process of learning how to program through a combination 

of curriculum content and the presentation of such content, thoughtfully designed 

learning environment, and a pedagogy that places systematic emphasis. 

1. Difficulty with understanding the inherently abstract programming elements.

2. Disruptive influence of programming language syntax on the learning  

process.

3. Lack of alternate and intuitive ways to express a program beyond typing it 

out.

4. Limited insight into how the computer actually executes the program.

Learner-Centered Curriculum and its Presentation

1. Singling out the most fundamental programming elements or concepts

This approach singles out five critical elements from the numerous programming 

elements that are part of any modern programming language. It considers these 

five elements as fundamental to the process of learning how to program. Since 

they are universal to all programming languages, understanding them is a prereq-

uisite to understanding almost any other programming element. 

The five fundamental elements in the learner-centered approach are:

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    67



VARIABLE

A variable is essentially a storage container for data. Data is what we manipulate 

within a program and so we need a place to store it. Once we store it, we need a 

way to access it when we need it. For this reason, every variable has two impor-

tant attributes – first its name, by which you can refer to it; and second its value, 

that which it stores. As the name ‘variable’ suggests, the value that it stores can 

vary. 

OPERATION

An operation is an instruction to the computer to perform some sort of calculation. 

A simple example for an operation would the addition of two numbers and storing 

its result in a variable for later use.  

CONDITIONAL

A conditional is a programming element that allows one to pose a question within 

their program, the answer to which allows the program to either run or not run a 

set of statements. In other words, it allows one to change the course of a program 

depending on the answer to a particular question. Conditionals introduce the idea 

of branching within a program - depending on certain conditions; the program can 

follow different paths. 

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    69learner-centered approach to teaching programming    |    69



LOOP

A loop is a programming element that allows the program to repeatedly execute a 

set of statements for a predetermined number of iterations. At the end of each  

iteration, the loop checks to see if it has executed the set of statements the 

desired number of times. If it has not, the loop performs another iteration; if it has, 

the loop stops executing and proceeds with the remainder of the program. 

FUNCTION

A function is a programming element that does something specific. They are writ-

ten for the purpose of being reused at a later time. The advantage of a function 

is that to use it, one need not know how the function was actually written. All we 

need to know to use a function is what it does, and if we need to provide it with 

any inputs for it to work. The inputs to a function are called its ‘parameters’ - they 

define how that instance of the function works.

By focusing the learner’s attention on just these few fundamental elements, the 

approach reduces the likelihood of learners getting overwhelmed and confused.

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    71



2. Developing a visual representation for the fundamental programming  

elements

Programming elements or concepts are inherently abstract in nature, which makes 

it particularly difficult for beginners to understand them. One approach to help-

ing someone understand an abstract concept is to develop an equivalent visual 

representation for it. McLoughlin and Krakowski (2001) point out that “in everyday 

life, visualization is essential to problem solving and spatial reasoning as it enables 

people to use concrete means to grapple with abstract images.” They addition-

ally out that visual representations have the capacity “to support learning and 

understanding by presenting multiple perspectives and by engaging the learner in 

dynamic, non-linear modes of thinking.” (McLoughlin & Krakowski, 2001)

The learner-centered approach attempts to do just that by developing a visual 

representation for each of the abstract programming elements. The visual repre-

sentation tries to communicate a critical aspect of the programming element – ei-

ther its purpose, or its working, or ideally, both. In doing so, the approach concret-

izes these abstract elements. 

Laura Novick, in her research, on evaluating the effectiveness of visual represen-

tation in LabVIEW, a visual programming language, compared the performance 

of students taught a subset of the LabVIEW language, with its circuit-diagram 

type of representation, to that of students taught a textual equivalent of the same 

language. She observed better performances amongst students exposed to visual 

representations, and attributes it to “the power of diagrammatic representations to 

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    73learner-centered approach to teaching programming    |    73



make readily accessible information that must be laboriously inferred from equiva-

lent textual representations.” Based on the results of her tests she concluded that 

“visual representations facilitated global understanding, and that the advantage of 

the visual representation was largest for the most difficult problems.” (Novick, L.)  

The learner-centered approach’s effort for developing an optimum visual repre-

sentation for each of the programming elements were guided by three guiding 

design principles, namely: 

1. The computational action (purpose) of the element represented. 

2. The aspects of the element that act as parameters to define the specific 

properties of this computational action, and

3. The actual mechanics (working) of how this computational action is carried 

out within the larger context of a program.

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    75



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    77learner-centered approach to teaching programming    |    77



a learner-centered approach to teaching programminga learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    79learner-centered approach to teaching programming    |    79



Over a series of iterations, these efforts culminated in the following visual repre-

sentations for the five fundamental programming elements.

VARIABLE

Since a variable is a storage container for data, the critical aspects are its name 

and its value; so we can later access the storage container by its name and ac-

cess its value. An additional attribute is the type of data that a variable can store 

which is also visually represented.

a learner-centered approach to teaching programming

Fig. 6.2	 The different datatypes  
available for a variable (from top)  
Text, Number, Color, Boolean - True,  
Boolean - False.

Fig. 6.1	 Visual representation for a 
“variable”. The important aspects of a 
variable - its name and its value.

datatype

name value



learner-centered approach to teaching programming    |    81

OPERATION

The symbol for the operation programming element tries to highlight the most 

critical aspect of its working.  Since operations are essentially a calculation, they 

always end up with a result which is then stored in a variable. A simple example 

of an operation that adds two numbers is highlighted below the visual representa-

tion.

Fig. 6.3	 Example that performs an  
operation of adding two numbers - 20 
and 30; and storing the result in a  
variable called “sum”.

Fig. 6.4	 Visual representation for the programming element “operation”.

=

sum 20 30+



CONDITIONAL

In the case of a conditional, there are three important pieces of information that 

pertain to its working. First, is the conditional or question that is being posed. 

Second, is the branch of the conditional, TRUE (color green) or FALSE (color red), 

which is selected based on the result of the conditional. Third, the set of state-

ments that the conditional executes if the condition is TRUE. The visual represen-

tation tries to get across these three attributes of its working.

a learner-centered approach to teaching programming

Fig. 6.5	 Visual representation for a “conditional”. Its critical aspects are 
highlighted as well.

FALSE

set of 
statements 
executed 
when the 
condition is 
met (TRUE)

conditional 
or question

TRUE



learner-centered approach to teaching programming    |    83

LOOP

The loop extends the conditional programming element by providing an ad-

ditional capability of repeating a set of instructions for a predetermined number 

of iterations. The question or condition in the case of a loop is one that checks if 

the number of iterations executed so far are equal to the predetermined number 

of iterations. A variable by the name of COUNT keeps track of the number of 

iterations executed so far, and is updated at the end of each iteration. The visual 

representation tries to get across all of these attributes of the working of the loop.

Fig. 6.6	 Visual representation for a “loop”. Its critical aspects are high-
lighted as well. The programming element comes embedded with a variable, 
“count”, to keep track of its iterations; also referred to as the loop counter. 

count = 0

count < 

count = count + 1

set of 
statements 
“repeatedly” 
executed as 
long as the 
condition is 
met (TRUE)

“count” is 
checked after 
each iteration

variable “count” to 
keep track of number 
of  iterations

“count” is 
updated after 
each iteration

TRUE



FUNCTION

In case of the programming element function, the name of the function and the 

parameters or inputs that the function needs are its most important aspects. The 

visual representation below is an example of the programming element when a 

function by the name of “drawRectangle” is picked. The drawRectangle function 

needs fur parameters or inputs to work properly, and so four placeholder input 

boxes are provided in the representation for each of the inputs. The learner can 

provide values for these inputs by entering values into it.

a learner-centered approach to teaching programming

Fig. 6.7	 An example visual representation for the programming element 
“function”.



learner-centered approach to teaching programming    |    85

This approach to using visual representations for abstract programming elements 

is not new. It is the approach employed by Visual Programming Languages, such 

as Max-MSP and Quartz Composer.

As one might notice, the visual representations of most, if not, all programming 

elements in this programming language are quite similar to one another. Given the 

Fig. 6.8 An example program from visual programming language - Quartz Composer. 
The program here cycles through by fading from a source image to a destination image.



similarity in visual representation of different programming elements, its hard to 

tell the difference if there is any conceptual difference amongst the various pro-

gramming elements being viewed in the program, this is more so in the case of a 

learner. Programming elements in this example program might differ significantly, 

in both their purpose and in their working, from one another but one cannot make 

that distinction simply by looking at them. It is here that the learner-centered ap-

proach differs from the approach taken by the above-cited programming lan-

guages. 

The learner-centered approach tries to adopt unique visual representations for 

each of its programming elements, so as to emphasize the conceptual differences 

amongst them. This is important, particularly in the early stages, for a learner who 

is trying to understand the various programming elements and what differentiates 

one element from another. 

While it remains to be evaluated if the learner-centered approach, of using unique 

visual representations for each of the programming elements, resulted in an 

enhanced learning experience. The learner-centered approach acknowledges the 

importance of such an evaluation and has outlined it as part of its “Future Work/Di-

rection”. Nevertheless, it is evident from the research of McLoughlin and Krakows-

ki (2001) that “visual forms of representation are important, not just as heuristic 

and pedagogical tools, but as legitimate aspects of reasoning and learning.” 

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    87

The Learning Environment 

During the development of the visual representations, I realized that the repre-

sentations went only so far in communicating the purpose and/or the working of 

a programming element. The learner still had to understand how to actually “use” 

this element and “combine” it with other elements in the context of a program. 

Simply knowing the various programming elements does not necessarily translate 

into knowing how to program using them - a learning barrier deemed as  

“Knowing versus Applying”. Davies (1993) distinguishes between “programming 

knowledge (of a declarative nature, e.g., being able to state how a “for” loop 

works) and programming strategies (the way knowledge is used and applied, e.g., 

using a “for” loop apprpriately in a program).” 

While the learner-centered approach in its present form educates the learner 

about a programming element, it provides no mechanism to use it or to combine 

it with other programming elements, in ways that would help solve a particular 

problem. 

To address this barrier,  I have recognized the need for a programming environ-

ment. 



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    89learner-centered approach to teaching programming    |    89



a learner-centered approach to teaching programminga learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    91



a learner-centered approach to teaching programming

Fig 6.9 The interface of the learning environment conceived and developed as part of the learner-
centered 



learner-centered approach to teaching programming    |    93

Fig. 6.10	 Sections of the learning environment highlighted above, namely -  the five 
fundamental “programming elements”, the “CODE view” option, and the “Opacity 
slider”. Their functionality is explained in detail in the subsequent sections.

the five fundamental “programming elements” are accessible from the toolbar 

the “CODE view” option

the “Opacity” slider



Objectives for the learning environment

The learning environment extends the learner’s theoretical understanding of 

programming elements into something more functional. It is conceived with two 

primary goals. 

First is to serve as a programming environment, albeit rudimentary. The envi-

ronment is designed so the learner can assemble the various programming ele-

ments to create simple programs that solve a particular problem. (See section 

“Learner-Centered Pedagogy” later on in this chapter, for the types of problems 

that the learner-centered approach advocates.)  

Second is to reveal the inner workings of the learner’s program as it is being ex-

ecuted, in other words, show exactly how the computer executes the learner’s 

program line-by-line. This feature of the learning environment is in response to 

Rajan’s (1992) idea of a ‘notional machine’ - one that offers a dynamic view of 

the algorithm or program in action and greatly aids the learner’s understand-

ing of what the ‘nuts and bolts’ of a programming language actually do when a 

program is run. 

By revealing the inner workings of a program at the time of execution, the learning 

environment, in an implicit way, advocates the practice of testing and debugging 

as well as suggesting debugging strategies to the learner.

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    95

Features of the Learning Environment

All of the learning environment’s features and capabilities were designed particu-

larly with the learner in mind and to maximize their learning experience. 

1. Expressing programs in a more intuitive way.

The learning environment adopts an approach similar to modern visual program-

ming environments (VPE). It extends the previously created visual representations 

into graphical objects that now represent actual “code”. The representations are 

no longer static; instead they are now dynamic and functional elements. They can 

be moved around and combined with other graphical objects to form programs, 

in ways that are more intuitive than the traditional text-based method of ‘writing’ 

a program. The benefits of such direct and concrete ways to manipulate the pro-

gramming elements have already been discussed in the section “Visual Program-

ming Languages” of chapter “Textual and Visual Programming Languages”.

Beginners only need to know the purpose of the underlying programming ele-

ments to decide whether or not to use them. The graphical object’s visual shape 

and properties imply both the syntax of how to use the programming element as 

well as offer an intuitive way to combine it with other graphical programming ele-

ments. Such a graphical approach to combining elements eliminates the likelihood 

of creating a syntactically inaccurate program, and thereby enhances the overall 

learning experience. 

count =

 

0

count <

 

count =

 

count +

 

1

Fig. 6.11	 The “loop” programming ele-
ment comes with placeholders for where 
the user needs to input text in order to 
use it, thus implying its use and syntax.



2. Unifying the program creation and program output spaces

One of the design decisions taken by the learner-centered approach was to try to 

unify the two distinct physical spaces that a program and a program’s output each 

occupy. In most modern programming languages, the space where the program 

gets written or assembled, and the space where the output of the program gets 

shown are clearly separated. The program and its output are separate entities, 

but from a conceptual standpoint, the program’s output is a direct result of the 

program and would not exist if it not were for the program. 

To emphasize this causal relationship between the program and its output, the 

learner-centered approach tries to unify the two spaces, by layering them. The 

interface treats each space as a display area and refers to them correspondingly 

as, PROGRAM and OUTPUT. 

The PROGRAM and OUTPUT display areas are superimposed on top of one 

another with the PROGRAM area being above the OUTPUT area because the 

program gets assembled first and the output follows. By varying the settings on 

the Opacity slider, the learner can fade out the PROGRAM display area in order to 

have a better look at the program’s output in the OUTPUT display area.

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    97

Fig. 6.12	 The PROGRAM display area is displayed in front of the OUTPUT display 
area, to symbolize the conceptual relationship between a program and its output. The 
learner can view the OUTPUT display area by varying the Opacity slider’s setting.



a learner-centered approach to teaching programming

Fig 6.13 By altering the Opacity slider’s setting the learner can access and view the OUTPUT dis-
play area located underneath the PROGRAM display area.



It is important to mention that the idea of unifying the program creation and 

program output spaces is not something new. Programming languages and 

environments that are geared towards making programming more accessible to 

new users have used a similar approach, most notably, Design By Numbers and 

Scratch. Where the learner-centered approach differs from these other program-

ming environments is in how it further leverages this unification for purposes of 

offering the learner a dynamic view of the program at work. 

3. Offering a run-time and dynamic view of the program’s execution

In most modern programming languages, there is little insight into a program’s 

execution. For the programmer to obtain any such insight, they are expected to 

embed a series of trace or print commands that would, in essence, offer a line-by-

line commentary of what is happening within the program as it is being executed. 

To give you some background, a trace or print command is an instruction to the 

computer to print any desired detail of the programmer’s choosing.

The learning environment, by default, offers a run-time and dynamic view of the 

program’s execution. It offers insight into the most critical aspect(s) of each of the 

programming elements as the program is being executed.

learner-centered approach to teaching programming    |    99



VARIABLE 

The value of a variable is it’s most critical aspect. It is this piece of information that 

is displayed to the learner while the program is being executed. If this value is 

updated through some sort of a calculation, then the environment will display the 

updated value. 

OPERATION

Since an operation is a calculation, the final result of that calculation is the most 

critical piece of information for this programming element. It is this end result of an 

operation that the learning environment displays to the learner.

CONDITIONAL

In the case of a conditional, there are two important pieces of information. The first 

is the result of the conditional or question that is being posed, and the second, is 

the branch of the conditional, the TRUE or the FALSE, which is selected based on 

this result. The learning environment displays both of these pieces of information 

to the learner while evaluating a conditional. 

LOOP

The loop extends the conditional programming element by providing an addi-

tional capability of repeating a set of instructions for a predetermined number of 

iterations. The question or condition in the case of a loop is one that checks if the 

number of iterations executed so far are equal to the predetermined number of 

iterations. A variable by the name of count keeps track of the number of iterations 

a learner-centered approach to teaching programming



executed so far, and is updated at the end of each iteration.

So in the case of a loop, the learning environment displays the results of the con-

dition that compares the number of iterations executed so far (count) against the 

predetermined number of iterations. It also indicates the execution of the set of in-

structions within the loop. And finally, it displays the updated value of the number 

of iterations executed so far, the value of count. 

FUNCTIONS

The information that is pertinent to a function is its parameters while being ex-

ecuted. Parameters of a function can be literal, as in given a direct value, or not 

literal, where they instead refer to a variable. In case of the latter, the current value 

of the variable is substituted at the time of executing the function. 

The learning environment will display the values of all the parameters of a func-

tion, and if any of them refer to a variable, then it will instead display the current 

value of that variable at the time of the function’s execution. 

By displaying this kind and amount of insight into the internal workings of a 

program while it is being executed, the learning environment affords the learner 

a way to validate their understanding of programming elements, and of how the 

computer actually executes their program. 

learner-centered approach to teaching programming    |    101



4. Synchronizing the program execution and program output

In the initial stages of learning how to program the learner often lacks a strategy 

for testing and debugging logical errors in their programs. When things go wrong 

or just do not happen, its difficult for a learner to know where to start and what to 

look at. 

The learning environment tries to address this barrier by offering a direct correla-

tion of steps in a program to the program’s output. It achieves this by  

synchronizing the program’s execution to its output and thus offers a line-by-line 

insight into each step of the program.

By using problems that have a visual component as part of their output, as ad-

vocated by the “Learner–Centered Pedagogy”, this feature can be leveraged to 

suggest to the learner where in their program is the logical error stemming from. 

Such a synchronization of program execution and program output now makes it 

possible for learners to associate a flaw in the visual output to a flaw in the logic 

of their program.

a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    103



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    105



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    107



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    109



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    111



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    113



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    115



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    117



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    119



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    121



a learner-centered approach to teaching programming



learner-centered approach to teaching programming    |    123



a learner-centered approach to teaching programming

5. Offering a means to transition to the more powerful and general-purpose  

programming languages

The environment, designed as part of the learner-centered approach, was always 

envisioned as a simple, yet thoughtfully designed, “learning” environment that 

also happens to offer some rudimentary programming capabilities. It does not 

intend to compete with the power and capabilities of modern programming lan-

guages or environments (such as Processing, JAVA, etc.). This decision is rooted 

in the argument that the more powerful a programming language becomes, the 

more difficult it is for the language to serve the needs of a beginner. (See chapter 

“Evolution of programming languages” for a more detailed discussion)

The learning environment also recognizes that ultimately the learner will need to 

graduate to a more powerful programming language or environment. To this end, I 

have conceived a feature in the learning environment that facilitates such a transi-

tion.

The learning environment offers a “CODE view” option that, when enabled, will 

translate an onscreen graphical programming element into its textual equivalent 

in code. This would allow learners to use this code as a starting point in a more 

powerful textual programming language or environment, where they can further 

explore more advanced concepts of programming. It is intended that the textual 

code be made available in the vocabulary of the programming language, Pro-

cessing. Processing was chosen as the language to transition to, for reasons that 

its design and pedagogical motivations are particularly geared towards making 

the “CODE view” option

Fig 6.14 The “CODE view” option as it 
appears on the interface.



learner-centered approach to teaching programming    |    125

programming more accessible; and it does so by balancing language features with 

ease of use of the language. 

Learner-Centered Pedagogy 

The learner-centered pedagogy places greater emphasis on a firm understanding 

of the fundamental programming elements and how these elements behave when 

combined with one another in the context of a program. Less emphasis is placed 

on generating syntactically accurate programs or gaining an encyclopedic knowl-

edge of the various programming elements in the very early stages.

To achieve this objective, the pedagogy of the learner-centered approach is 

designed around the following key philosophies. An example that implements the 

learner-centered pedagogy is also subsequently outlined.

1. Introduce one programming element at a time 

When ever possible problems should be designed to introduce a single pro-

gramming element at a time in the context of a simple yet familiar programming 

problem. This way the learner can understand the purpose and working of the 

particular element without the presence of competing programming elements. 

2. Problem should always have a visual component as part of its output

All problems or assignments based on the learner-centered pedagogy should 

have a visual component as part of its output. This helps the learner to associate 



a learner-centered approach to teaching programming

the logical steps of their program with specific visual output showing up on the 

screen. Should there be a flaw in the visual output or lack thereof, it will immedi-

ately indicate to the learner that there is a flaw in their programming logic. By tying 

the abstract program logic to its more tangible visual output, the learner-centered 

pedagogy tries to make the process of learning how to program more concrete 

and intuitive.

3. When introducing a new programming element, introduce it in the context of a 

previously understood programming problem

In other words, build upon understood concepts and existing problems rather 

than starting afresh with each new programming element. This allows the learner 

to learn a new concept on previously established and familiar territory and thus 

learning becomes a cumulative process. The learner need only focus on the new 

programming element and the steps that accompany it, as opposed to under-

standing all of the steps in an entirely new assignment. 

Example Of Learner-Centered Pedagogy

BACKGROUND

It is assumed that the setting is that of a class of individuals interested in begin-

ning to explore programming in their areas of specialization but are not looking to 

major in computer science. The individuals understand the value of and the need 

for programming, but are unsure of how to use the various programming elements 



learner-centered approach to teaching programming    |    127

in ways that help realize their intent. The instructor has introduced the class to 

what ‘programming’ is about and has talked of some of its uses in everyday life 

– such as, business, science, and engineering. He further extends the domain of 

programming by talking about artists and designers who have also used program-

ming to generate expressive, interactive, and informative works of art by sharing 

with the class various images and real-life examples of such work. The goal of this 

particular course is to provide the individuals with a solid understanding of the 

fundamental elements of programming and to offer them enough knowledge to 

transition to a more powerful and modern programming language / environment. 

Below is an example of a pedagogical scenario influenced by the learner-centered 

approach. 

EXAMPLE

To introduce the programming element variable to a learner.

While introducing this concept to the learner, it is important to find a context where 

the use of a variable makes sense. More importantly, the use of the variable must 

be apparent to the learner. Its use should have a visible and concrete impact. 

The instructor can first start by explaining what a variable is to the students. He 

can then engage the students by asking them to come up with various kinds 

of data that can be stored. This discussion can in turn become an exercise in 

identifying the different kinds of data there are, which allows for the instructor to 



a learner-centered approach to teaching programming

introduce the concept of a ‘datatype’. 

With this understanding in place, the instructor can then put the newfound knowl-

edge to use by demonstrating the use of a variable in the context of the learning 

environment. The instructor can proceed to launch the learning environment at 

this point and walk the students through the interface of the learning environment. 

In particular, the instructor should spend some time introducing the menu bar con-

sisting of the graphical objects representing the five fundamental programming 

elements to the students.

In order to engage the students actively and to make them feel empowered, the 

instructor can demonstrate how to draw familiar shapes on the screen through the 

use of functions available in the learning environment. This allows the instructor to 

then introduce the programming element function. 

The reason for introducing the programming element function alongside the pro-

gramming element variable is because of the fact that it is difficult for the learner 

to understand the purpose and working of a variable without creating a context 

where they use it. By drawing a shape on the screen we actively engage the stu-

dent, and also succeed in creating a context where the concept of a variable can 

be better explained. This allows the instructor to also bring in the necessary visual 

component to the problem, as advocated by the pedagogy of learner-centered 

approach.



learner-centered approach to teaching programming    |    129

At this point, the instructor can spend time discussing the different aspects of the 

interface – particularly, the PROGRAM and OUTPUT display areas, and how the 

Opacity slider controls the visibility of the PROGRAM display area. 

The instructor can then select the “drawRectangle” function on screen and dis-

cuss some of its properties, in particular the four parameters it takes to do its task. 

The discussion can then be steered towards exploring the possibility of converting 

one of its parameters into a variable. 

The instructor can walk them through the process of creating a variable by the 

name of “width”. To ensure that there is little change to what happens on the 

screen, the instructor can initially decide to give it the same value as that of the 

parameter for width of the drawRectangle function presently on screen. This way 

we introduce only one change at a time and the student can comprehend which 

of the newly introduced elements has been the cause for it.

To underscore the fact that the variable is a container for storing data or informa-

tion used in a program, the instructor can then start to manipulate its contents. 

After each such manipulation of the variable’s value, the instructor can ask what 

the effect of the change will be when the command is executed. The students can 

then be asked to run their programs and see first-hand, the resulting visible and 

concrete changes to the dimensions of the rectangle on screen.

Towards the end of this demonstration, the instructor can then provide the student 



a learner-centered approach to teaching programming

with an opportunity to transition to a more modern programming language. By 

enabling the CODE view option, they can obtain the textual equivalent in code for 

their visual program. The students can then take the snippet of code offered by 

the learning environment to further experiment with the programming elements or 

concepts introduced in this example. 

Looking back at this series of interactions, we begin to see how at every stage, 

the pedagogy creates a visual and tangible context for explaining the purpose 

and working of abstract programming elements. Care is taken to introduce only 

one programming element at a time. Whenever possible newer programming ele-

ments are introduced as enrichments of previous programs. Guided discovery and 

active engagement of the student is a critical part of the philosophy of learner-

centered pedagogy. Finally, the learning environment complements the overall 

learning experience by providing the learner with a clear and in-depth insight into 

how the individual programming elements work as well as how they work in com-

bination with other programming elements. 

Although the learning environment proposed by the learner-centered approach 

is rudimentary in its capabilities when compared to modern programming envi-

ronments; it is still, at the core, a programming environment. And no matter how 

limited the list of features be in such an environment, it is a major undertaking to 

build a programming environment given the time and resource constraints. The 

limited prototypical nature of the learning environment made it difficult to test and 

evaluate the learner-centered pedagogy in a classroom setting.



learner-centered approach to teaching programming    |    131

Despite these constraints, I built a scaled down model of the learning environ-

ment, a prototype, for the purposes of demonstrating some of its features and 

soliciting user feedback. Instead of allowing users the capability to assemble 

their own programs, which would most certainly require a fully functional learn-

ing environment, I provided the learners with preassembled programs within the 

prototype. To compensate for the lack of ability to assemble their own program, 

demonstration videos were created to illustrate how learners would go about in-

teracting with the interface of the learning environment, and how the environment 

would guide the learner to use and combine programming elements. The video 

culminates with a program on screen, similar to the one preassembled in the 

prototype. Lastly, the “CODE view” option has a visible presence on the interface 

but is not functional within the prototype presently; its capabilities were verbally 

explained to the users. 

Three distinct prototypes, each with its own separate preassembled program, 

were created as part of this effort. Each prototype represents an example of the 

learner-centered pedagogical approach at work. As a whole, the three prototypes 

represent the kind of progression in programming pedagogy that is advocated by 

the learner-centered approach. These prototypes were shared with a group of five 

users, who most closely resembled the audience the learner-centered approach 

was originally conceived for - beginners who are just starting to explore program-

ming. Their experiences testing the prototype, and the feedback obtained regard-

ing the learning environment are discussed in the following chapter.



07



    |    133

07
prototype testing and user feedback



Prototype Testing

The purpose of testing was to introduce potential users, those beginning to 

explore programming, to the learner-centered approach and its specially de-

signed learning environment.  The goal was to obtain their feedback on the 

learner-centered approach as a whole. More specifically, feedback was solicited 

on features and capabilities of the learning environment, and if any of them might 

help address issues they currently face while learning to program in a text-based 

language. 

The prototype selected for this testing was one with a preassembled program that 

could draw multiple boxes using a “loop” programming element, and also be able 

to control where each box gets drawn on the screen (see figure on right.) This ver-

sion of the prototype was specifically chosen for the following reasons:

1. It includes all but one of the fundamental programming elements identified in 

the learner-centered approach, namely – variable, function, loop, and Opera-

tion.This allowed me to introduce to the user all but one of the visual represen-

tations developed as part of the learner-centered approach. It also allowed for 

a more informed evaluation of the visual representations, and the approach as 

a whole.

2. Given the variety of the programming elements in this program, the user 

also has the opportunity to see the full range of information that the learning  

environment has to offer while it executes the program. When the program is 

a learner-centered approach to teaching programming



prototype testing and user feedback    |    135

Fig 7.1 Screenshot of the prototype’s interface that was used to test with potential users.



actually run, the user will see first hand the kind and range of information that 

the learning environment reveals for each of the programming elements during 

the program’s execution. 

3. The program can draw multiple boxes, which in turn allows for the user to 

better evaluate the particular synchronization feature of the learning environ-

ment. This feature synchronizes the program execution to program output. 

Since the user has the ability to alter the values of various variables within the 

preassembled program, they can affect the program’s output and evaluate the 

usefulness of the synchronization feature. 

User Feedback

Regarding Visual Representations

1. Some users felt that the visual representations felt very “engineering” like. One 

of the users referred to it as “flowchart symbols”. They felt it might intimidate a 

new learner with its mathematical appearance and they might not know how to 

exactly use an element, say for instance the loop.

2. At the same time, some felt that the visual characteristics of the representations 

actually helped them better understand a programming element. They found the 

examples of the variable, conditional and loop particularly successful in this area. 

a learner-centered approach to teaching programming



prototype testing and user feedback    |    137

Regarding Pedagogy

1. Some users felt that it would be helpful if the learning environment came 

equipped with small demonstration videos that presented 1-2 examples of how 

to work with each of the programming elements. They felt the videos would help 

someone who only has access to the learning environment and is not part of a 

classroom, or someone who is part of a classroom but would like to review it on 

their own at a later time.

Regarding Learning Environment

1. All users indicated they appreciated the slow playback feature of the learning 

environment, for it allowed them to see what was actually happening to the pro-

gram while it was being executed. They particularly appreciated the insight it of-

fered into how a loop worked. They mentioned that while executing a text-based 

program, they had little idea of the process of execution. They did not understand 

what happened inside a programming construct such as a ‘for’ loop in-spite of 

knowing the purpose of a loop. 

2. All users agreed that they received a clear sense of “order” in the flow of 

program logic from step to step. They felt the approach of visually connecting 

graphical programming elements gave them a clear sense of the different steps in 

their program. The sub-grouping of blocks of statements, as in those inside a loop 

element, achieved by visually indenting them to the right, helped with the sense of 

order and program flow.



Users particularly liked the way the learning environment literally stepped them 

through each statement of the program as it was executed. It made the order of 

execution fully apparent. 

3. Almost all users liked the idea of the CODE view option. They appreciated the 

help the learning environment provided in terms of the snippet of code. 

Some actually went so far as to suggest a third display area, beyond the existing 

PROGRAM and OUTPUT display areas, where a concurrent view of textual code 

could be made available to the learner. As the learner would assemble a program 

using the graphical objects, this third view would simultaneously be updated 

with the corresponding textual code. Learners can recognize the sections in the 

text-based code that relate to a programming element’s syntax, and sections that 

correspond to what the user must provide.

4. Some users felt that a video that explained the various features of the learning 

environment would be helpful. They felt that there is a learning curve associated 

to getting familiar with any new environment. A handy video available at all times 

would address the problem of getting acquainted with, and more importantly, mas-

tering the use of the environment.

a learner-centered approach to teaching programming



prototype testing and user feedback    |    139

SPECIFIC CONCERNS

1. After a few iterations of running the program in the environment, most users 

felt that the super-imposing of the PROGRAM and OUTPUT display areas was a 

bit distracting and even confusing at times. They felt it would be better to offer a 

split screen view instead, where the two areas are clearly separated. Based on the 

user’s preference these areas could then be vertically or horizontally aligned to 

one other and this would help them to visually link program execution with output.

2. Users reported concerns over contrast and legibility. They pointed to the color 

scheme of the interface and the background treatment for the graphical program-

ming elements as making it difficult for the eyes to follow the program’s execution. 

They sometimes had difficulty determining whether an element belonged to the 

PROGRAM or the OUTPUT display areas. 

3. Some users also raised concerns over issues regarding screen real estate. The 

current program, that only has three statements, ends up occupying a sizeable 

portion of the screen. They raised questions as to how the interface would grow 

to accommodate larger programs, and what sort of navigation would be required 

to access the off screen program elements.



a learner-centered approach to teaching programming

SUMMARY OF FINDINGS

Overall, the feedback from the representative group of users, albeit limited, was 

encouraging. 

Users appreciated the synchronization feature for the associations it helped en-

able between program steps and program output. They liked the slow playback of 

program execution for it clarified their understanding of how certain programming 

elements actually worked, particularly the complex statements such as the loop. 

They also liked how the slow playback feature helped raise their understanding of 

the overall program logic and its execution.

The limited capabilities of the prototype, and the constraints that time and resourc-

es placed on the construction of the learning environment limited my ability to fully 

test and evaluate the pedagogy advocated by the learner-centered approach. The 

value and importance of a comprehensive evaluation is not underestimated, and 

is designated as an outstanding task in the “Future Work/Directions” section.



prototype testing and user feedback    |    141



Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam 
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam 
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci 
tation ullamcorper suscipit lobortis.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam 
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam 
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci 
tation ullamcorper suscipit lobortis.



conclusion    |    143

conclusion

Future Work / Direction

Two clear directions for future work emerge from the testing of the learning envi-

ronment, and from the feedback obtained from its users in the process.

 

1. To continue building the “fully” functional version of the learning environment with 

features and capabilities as originally conceived by the learner-centered approach. 

This work will also include any necessary visual refinements to the graphical rep-

resentations of programming elements, aesthetic treatments to the interface to ad-

dress legibility concerns, and providing users flexibility in configuring the learning 

environment to suit their learning style – for instance, allowing them to choose 

a split screen versus superimposed approach to viewing the PROGRAM and  

OUTPUT display areas. 

2. To develop instruments that can adequately test and evaluate the effectiveness 

of the learner-centered based approach to teaching programming to its intended 

audience in a classroom setting. The evaluation will focus on the extent to which 

the pedagogical approach combined with the features of the learning environment 

contribute to the overall experience of learning how to program.



a learner-centered approach to teaching programming

Final Thoughts

With a few exceptions, programming languages have been written for the construc-

tion of major applications and operating systems by teams of professionally trained 

programmers. For this reason, the languages are necessarily complex, given the 

range of things they must be capable of, and their syntax is necessarily rigid, to 

facilitate consistency, and use by different teams of programmers. Despite their 

power and capabilities, such programming languages are ill suited for the purpose 

of teaching programming, and yet they are most often the language of choice in 

introductory programming courses.

Programming environments are no exception. They too have traditionally support-

ed the writing, debugging, and compiling of programs as mostly sequences of ‘text’ 

commands. Because they are built to manage industrial sized projects of high com-

plexity, such environments also tend to be difficult to use for beginners and thus, 

contribute little to the learner’s understanding of how to program.

There have been efforts to create programming languages for users who are not 

programmers, but wish to use some programming to facilitate their work. An ex-

ample is, Processing, a user-friendly variant of Java. Programming environments 

are also being developed to support individual creative work. Some of these are 

fully visual and allow the entire program to be constructed of graphical components 

with capabilities of manipulating a variety of media, such as Scratch.



However, questions still persist as to what is the most effective way to introduce 

programming to learners who do not have a formal background in mathematics, 

computer science and/or programming logic. What kind of pedagogy, and what sort 

of tools best respond to the needs of learners who may use programming occasion-

ally to enrich their work, but are not looking to be professional programmers?

There is a clear and growing need for programming languages and environments 

that respond solely to the needs of such learners. Languages that use intuitive, con-

ventional terminology, and syntax that is of minimal complexity. Programming envi-

ronments that are easy to use, and encourage exploration of different approaches 

to program logic. And ideally, such environments would also provide insight into 

the step-by-step processing of a program by revealing the logic to its execution. In 

parallel, there is also a need for a pedagogical approach that is hands on, and dis-

covery oriented to actively engage its learners. Together, an intuitive programming 

environment and an enriched pedagogy, will help such learners get familiar with 

programming elements without feeling overwhelmed by a complex professional 

programming environment that has rigid syntax, and difficult command terminol-

ogy.

To this extent, I felt strongly that a learner-centered approach to introductory pro-

gramming instruction combined with an interactive learning environment was the 

most effective approach to serve this need. As part of this effort, I developed a 

prototypical-learning environment, defined a related pedagogical approach to in-

struction, and tested my work on a number of users.

conclusion    |    145



The results of user testing made it clear that the learner-centered approach in com-

bination with an environment that visualizes program logic is an asset for the intro-

duction of programming concepts to users with little or no background in computer 

science. More importantly, the learner-centered approach contributed positively to 

the user’s overall experience of learning how to program.

a learner-centered approach to teaching programming



conclusion    |    147



Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam 
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam 
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci 
tation ullamcorper suscipit lobortis.



bibliography    |    149

bibliography

CHAPTER 1

Stark, Peter. (1967). Digital Computer Programming (pg 3-11)

“Abacus” Wikipedia, The Free Encyclopedia. 6 May 2009, 03:36 UTC. 6 May 

2009 <http://en.wikipedia.org/w/index.php?title=Abacus&oldid=288198132>.

Fernandes, Luis. “The Abacus: Introduction.” A Brief Introduction to the Abacus. 

6 May 2009 <http://www.ee.ryerson.ca/~elf/abacus/intro.html> 

Kohanski, Daniel. (1998) The Philosophical Programmer

CHAPTER 2

Stark, Peter. (1967) Digital Computer Programming (pg 373-379)

“Machine code.” Wikipedia, The Free Encyclopedia. 24 Feb 2009, 19:43 

UTC. 3 Mar 2009 <http://en.wikipedia.org/w/index.php?title=Machine_

code&oldid=273022790>.

”Programming language.” Wikipedia, The Free Encyclopedia. 28 Feb 2009, 

15:22 UTC. 2 Mar 2009 <http://en.wikipedia.org/w/index.php?title=Programming_

language&oldid=273894374>.



a learner-centered approach to teaching programming

CHAPTER 3

“Programming language.” Wikipedia, The Free Encyclopedia. 3 May 2009, 14:51 

UTC. 3 May 2009 <http://en.wikipedia.org/w/index.php?title=Programming_

language&oldid=287648502 >

“Visual programming language.” Wikipedia, The Free Encyclopedia. 24 Apr 

2009, 15:18 UTC. 7 May 2009 <http://en.wikipedia.org/w/index.php?title=Visual_

programming_language&oldid=285867794>. 

Burnett, Margaret, Visual Programming. In Encyclopedia of Electrical and Elec-

tronics Engineering (John G. Webster, ed.), John WIley & Sons Inc., New York, 

1999.

Shneiderman B., Direct manipulation: a step beyond programming languages. 

Computer 16(8): 57-69, August 1983.

CHAPTER 4 

Ala-Mutka, Kirsti - Problems in Learning and Teaching Programming: Codewitz-

Minerva project

Deek, Fadi. (1998) - Problem solving, then programming. Pedagogical changes 

in the delivery of the first-course in computer science 

Anthony Robins et. al. (2003) - Learning and Teaching Programming: A Review 

and Discussion

Winslow, Leon (1996) - Programming Pedagogy: A Psychological Overview



Garner, Stuart. (2007) - A program design tool to help novices learn program-

ming. 

Davies, S.P. (1993) – Models and theories of programming strategies. Interna-

tional Journal of Man-Machine Studies, 39, 237-267

TechTarget (2005). TechTarget. Retrieved April 24, 2009:

http://whatis.techtarget.com/definition/0,,sid9_gci213457,00.html 

CHAPTER 5

Kelleher, C. and Pausch, R. (2003) - Lowering the barriers to Programming: a 

survey of programming environments and languages for novice programmers.

Rowe, G. and Thorburn, G. (2000) - VINCE: an online tutorial tool for teaching 

introductory programming.

Anthony Robins et. al. (2003) - Learning and Teaching Programming: A Review 

and Discussion

Ala-Mutka, Kirsti - Problems in Learning and Teaching Programming: Codewitz-

Minerva project

Rajan, T. (1992) Principles for the design of dynamic tracing environments 

for novice programmers, Novice Programming Environments: Explorations in 

Human-Computer Interaction and Artificial Intelligence

bibliography    |    151



a learner-centered approach to teaching programming

“BASIC.” Wikipedia, The Free Encyclopedia. 7 May 2009, 02:45 UTC. 7 May 

2009 <http://en.wikipedia.org/w/index.php?title=BASIC&oldid=288399675>.

CHAPTER 6

C. McLoughlin and K. A. Krakowski (2001) , Technological tools for visual think-

ing: What does the research tell us?

Novick, L. R. “Research Interests.” Laura R. Novick. 6 May 2009 http://www.

vanderbilt.edu/peabody/novick/#research

Davies, S.P. (1993) – Models and theories of programming strategies. Interna-

tional Journal of Man-Machine Studies, 39, 237-267





a learner-centered approach to 
teaching programming

mahesh gudapakkam




